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Transitions between dynamical states in integrate-and-fire neuron models with periodic stimuli result from
tangent or discontinuous bifurcations of a return map. We study their characteristic scaling laws and show that
discontinuous bifurcations exhibit a kind of phase transition intermediate between continuous and first order. In
the model-independent spirit of our analysis we show that a six-dimensional �6D� gating variable model with
an attracting limit cycle has similar phase transitions, governed by a 1D return map. This reduction to 1D map
dynamics should extend to real neurons in a periodic current clamp setting.
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Neurons in awake, behaving mammals receive compli-
cated dendritic input currents and respond with highly ir-
regular trains of action potentials. Unraveling the meaning of
each neuron’s train of spikes is a formidable challenge. There
is a long history of detecting collective rhythmic neural ac-
tivity at various scales, from electroencephalography �EEG�,
to local field potentials, to oscillatory membrane currents
stimulating individual pyramidal and interneurons in voltage
clamp recordings. Yet the general question of how collective
rhythmic activity in a network affects an individual neuron’s
spike timing is far from well understood. We present a bio-
physical approach to this problem that is informed by the
theory of phase transitions in statistical mechanics, empha-
sizing universal features in the spike-timing patterns and in
their development. Real neurons are very complicated but
such universal features that are independent of the approxi-
mation inherent in modeling provide the link between theory
and experiment.

Consider a neuron in a slice preparation firing at some
rate, and then subsequently injected with an additional small
rhythmic stimulus current. The neuron will then adjust its
spike times, and in some instances may speed up or slow
down enough to entrain to the rhythm. More generally one
can study the dependence of a neuron’s firing pattern on a
periodic input current. Extensive theoretical work �1–5� on
this problem, typically using integrate-and-fire models, de-
veloped the notion of p-q entrainment, where the neuron
fires exactly q times over p cycles of the rhythm, which can
be described in terms of the dynamics of a �possibly discon-
tinuous� return map that relates successive neuron spike
times. Complementary studies incorporating coupled pairs or
networks of neurons �6,7�, transmission delays �8�, noise �9�,
and threshold modulation �10� have contributed to a substan-
tial literature on this topic. A related set of recordings on
squid giant axons receiving only periodic pulses with an
analysis using the FitzHugh-Nagumo model demonstrated
�11� the practicality of a return-map analysis in real cells.

In this paper we cast this analysis in the framework of
phase transitions and demonstrate that the entrainment pla-
teaux have various universal, model-independent features.
We show that the convergence to entrainment to a p-q phase-
locked firing pattern is characterized by one of two sets of
very particular scaling relations. These two universality
classes originate from the two possible bifurcations of the

return map associated with entrainment. One of these bifur-
cations leads to a new kind of phase transition, intermediate
between the continuous and first-order transitions tradition-
ally encountered in statistical mechanics. Most significantly,
it turns out that this analysis applies not only to one-
dimensional �1D� threshold models but also to multidimen-
sional neuron models based on dynamical gating variables,
since a 1D return map essentially governs the dynamics de-
spite a much higher-dimensional state space. The order asso-
ciated with entrainment originates in the return map becom-
ing periodic in the presence of rhythmic stimuli. This
principle also applies to real neurons and consequently an
analysis of electrophysiological data in terms of a return map
would explore to what extent the universal features across
different models also manifest in living cells.

We begin by considering a generic 1D threshold model of
a neuron’s response to the influx of a current I�t�. The cell’s
membrane voltage v�t� is governed by a differential equation
of the form Cdv /dt= f�v�+ I�t�, together with the condition
that if v�t� reaches a threshold vth then an instantaneous ac-
tion potential or “spike” is generated and v�t� is reset to an
equilibrium resting potential veq. The constant C is the mem-
brane capacitance. We take as the initial condition some time
t0 and v�t0�=veq. The neuron’s response is then characterized
by its train of spike times t0 , t1 , t2 , . . .; the relationship be-
tween consecutive spike times determines a return map F via
tn=F�tn−1�=Fn�t0�. In the simplest case where I�t� is con-
stant, the neuron fires periodically and the interspike interval
�ISI� tn− tn−1=T0 is constant, provided I�t�= I0 is above the
threshold Ith which insures v̇�0 for veq�v�t��vth. In other
words, the return map is simply F�t�= t+T0.

Next we add a periodic perturbation to the constant cur-
rent case: for example, I�t�= I0+ I1 cos�2�t /Tdr�. The return
map F is no longer a simple linear function, but satisfies the
periodicity relation F�t+Tdr�=F�t�+Tdr reflecting the period-
icity of the perturbation. We impose the condition I1
� f�veq�+ I0, which guarantees that v�t� never drops below
veq. Under this condition, either all solutions v�t� with initial
condition v�t0�=veq eventually reach the threshold vth, or
none do �again due to the periodicity of I�t��. In the spiking
case F is strictly increasing, and continuous when I1
� f�vth�+ I0. Typically f�vth�� f�veq� so we expect to find
discontinuous maps for sufficiently small I0, as noted in Ref.
�3�.
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The introduction of a second, competing time scale leads
to a loss of the simple periodic behavior of the original
model. The model neuron typically no longer has a constant
interspike interval, and can exhibit both periodic and aperi-
odic firing patterns. The asymptotic dynamics are determined
by the average ISI

Tav = lim
n→�

tn

n
= lim

n→�

Fn�t0�
n

. �1�

We know from circle map theory �1,2,12� that the limit de-
fining Tav exists, is independent of t0, and depends continu-
ously on all parameters. Furthermore, the dimensionless ratio
Tav /Tdr is a rational number r= p /q if and only if

Fq�t*� = t* + pTdr �2�

for some t*; in other words t* is a fixed point of the map
Fq�t�− pTdr. So the spike train beginning with t0= t* satisfies
tn+q= tn+ pTdr and consequently the sequence of phases of tn
relative to Tdr repeats every q firings.

A simple example of this is the classic leaky integrate-
and-fire �IF� model which has f�v�=−�v−veq� /R. The mem-
brane resistance R together with C determine a time constant
�=RC. This particular model has Ith= �vth−veq� /R. In Fig. 1
we plot Tav /Tdr for the IF model as a function of the param-
eter I0, while keeping fixed Tdr=35 ms, �=20 ms, and I1

=0.1Ith. We divide the graph into two regions according to
whether the return map is continuous �green� or discontinu-
ous �red�.

The asymptotic structure of the average firing rate as in
Fig. 1 has been known for some time �1–3�. In this paper our
focus is on the approach to the asymptotic behavior, the re-
sulting connection to dynamical phase transitions and subse-
quent universal characteristics. For a given number r, let Mr

−

and Mr
+ denote the minimum and maximum values of I0 for

which Tav /Tdr=r. Then Mr
−�Mr

+ if and only if r is a rational
number; in other words the plateaux in Fig. 1 correspond to
rational multiples of the drive period. We view Fig. 1 as a
phase diagram, with each plateau a state corresponding to
some rational number r= p /q.

Within each p /q entrainment plateau, the spike train con-
verges to a pattern of ISIs that repeats every q spikes, corre-
sponding to a stable fixed point t* of Fq�t�− pTdr. For perfect
p /q entrainment tn+q− tn− pTdr=0; hence

�n
p,q = tn+q − tn − pTdr �3�

measures the deviation from p /q entrainment. The conver-
gence �in a plateau� is geometric: �n

p,q���Fq���t*��n.
The fixed points of Fq�t�− pTdr vary with I0 and ultimately

vanish through some kind of bifurcation at the edges of the
p /q entrainment plateau. Analogous to the theory of phase
transitions, the equation

�n
p,q � e−n/���I0� �4�

defines a coherence time ���I0� that characterizes how rapidly
the phase-locked solution is approached. Of particular inter-
est is how ���I0� scales with respect to the tuning parameter
I0 as an edge of an entrainment plateau �phase boundary� is
approached. As we shall show, the scaling has a universal
form dictated by the type of bifurcation through which the
fixed points are lost.

We first analyze the phase transitions and scaling behav-
iors in the parameter range where F is continuous, as in Fig.
2�a�. Upon varying I0 the fixed point is here lost through a
tangent bifurcation. The generic behavior near such a phase
boundary can be modeled by the simple map g�x�=x−x2

+	, which has a stable fixed point at x*=�	 that is lost
through a tangent bifurcation as 	→0+. Let 
xn=xn−x*;
then 
xn+1−
xn=−2�	
xn− �
xn�2, which has large n solu-
tion 
xn�exp�−2�	n� so xn→x* with a coherence time �
�1 /�	. This generic scaling holds for each fixed point of
Fq�t�− pTdr and as the phase boundary is approached from
within a plateau the coherence time then scales as

FIG. 1. �Color� Ratio of average period to rhythm period for the
IF model vs I0 for amplitude I1=0.1Ith, �=20 ms, and Tdr=35 ms.
The dotted curve is the ISI in the undriven case and the inset is for
the HH-CS model with I1=0.14Ith.

FIG. 2. �Color� Return maps F�t�− pTdr for
the IF model for I1 / Ith=0.1 near �a� left edge of
r=1 plateau and �b� right edge of r=2 plateau.
Return map for �c� the HH-CS model for I1 / Ith

=0.07 and for 0.14 with I0 inside the r=2 plateau.
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���I0� �
1

�I0 − Mr
��1/2 �5�

consistent with classical exponent �= 1
2 in equilibrium criti-

cal phenomena �15�.
The coherence time diverges at the phase boundary �when

the control parameter I0=Mr
��, and the dynamics can again

be modeled by the map g�x�. In this case 	=0, the fixed
point x*=0 and the 
xn

2 term above becomes relevant. The
large n solution is now xn�1 /n and hence xn+1−xn
�−1 /n2; in particular the fixed point at the tangent bifurca-
tion is no longer approached geometrically. Analogously, the
p /q-entrainment coherence at the phase boundary then de-
velops according to the power law

�n
p,q �

1

n2 �6�

consistent with a critical exponent =0.
As we vary the control parameter I0 so as to exit the p /q

entrainment plateau, convergence to a fixed point is replaced
by arbitrarily slowly evolving dynamics near the locations of
the q lost fixed points which we casually refer to as “bottle-
necks.” The dynamics can again be modeled by the map g�x�
which has a bottleneck near x=0 for small negative 	. As
	→0−, the number of iterations N	 needed to pass through a
fixed interval �−c ,c� around zero scales such as N	

�1 /��	�. N	 characterizes how long in takes to pass through
a single bottleneck and introduces a time scale outside the
entrainment plateau that diverges similar to the coherence
time in Eq. �5�. The deviation of the average period from rTdr
is inversely proportional to the number of iterations required

to pass through the bottleneck due to a lost fixed point of
Fq�t�− pTdr; thus

�Tav − rTdr� � �I0 − Mr
��1/2. �7�

This average deviation of entrainment plays the role of a
disorder parameter which, in analogy to phase transitions,
identifies the exponent �= 1

2 . This scaling form is illustrated
in Fig. 3.

In the parameter range where F is discontinuous it can
also acquire or lose periodic points through a discontinuous
bifurcation. As we shall see, the associated scaling near the
phase boundaries for these bifurcations belongs to a new
universality class. An example of this type of bifurcation is
illustrated in Fig. 2�b�, for r=2. The behavior at the bifurca-
tion �phase boundary� depicted here differs fundamentally
from the continuous case in Fig. 2�a�, in that the slope of the
map at the fixed point here remains strictly less than 1. Iter-
ates of the map still converge to the fixed point following the
geometric form in Eq. �4�, corresponding to a finite coher-
ence time at the bifurcation, as opposed to power law scal-
ing.

The behavior near the plateau edges for discontinuous bi-
furcations can be modeled by the piecewise-linear discon-
tinuous map h�x�=ax+	 for x�0 and h�x�=x−1 for x�0,
where 0�a�1 is fixed and 	 varies through 0. Let x̃
=	 / �1−a�; x̃ is the unique fixed point of h for 	�0. This
fixed point is lost as 	→0+ in a bifurcation similar to that
seen in Fig. 2�b�. Since h is linear for x�0, successive iter-
ates satisfy xn=hn�x0�= x̃+an�x0− x̃� provided x0 , . . . ,xn−1
�0. A bottleneck near x=0 develops for 	 small negative,
and even though x̃�0 is then no longer a fixed point of h, it

FIG. 3. �Color� Scaling in Tav near the edges
of the r=2 and r=1 plateaux. Edge E2

R demon-
strates the logarithmic scaling in Eq. �8� at a dis-
continuous bifurcation, while edges E2

L, E1
L, and

E1
R exhibit power law scaling in Eq. �7� at tangent

bifurcations.
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still controls the passage through the bottleneck in terms of
the expression for xn above. The number of iterations N	

needed to pass through an interval �0,c� is determined by
solving 0= x̃+as�c− x̃� for s and rounding up to the nearest
integer �N	= �s��. Substituting x̃=	 / �1−a� gives as=−	 / ��1
−a�c−	�. Therefore, as 	→0−, s� ln�−	� / ln a so N	 scales
as −ln �	�.

By analogy, for I0 just outside the edge of a plateau at
which a discontinuous bifurcation occurs, the number of it-
erations required to pass through the bottleneck due to the
lost fixed point of Fq�t�− pTdr scales as −ln � I0−Mr

��. As be-
fore, the deviation of the average period from rTdr is in-
versely proportional to this and thus scales as

�Tav − rTdr� �
− 1

ln�I0 − Mr
��

. �8�

So our disorder parameter vanishes logarithmically at phase
boundaries determined by discontinuous bifurcations—
slower than any power law.

For the IF example, both types of bifurcations do occur in
the parameter range where F is discontinuous. In fact, a more
careful analysis �based on monotonicity and concavity prop-
erties of F� proves that discontinuous bifurcations occur only
at the right edges of the entrainment plateaux, so all left-edge
bifurcations are tangent. Right-edge bifurcations come in
both types although tangent bifurcations are quite rare. For
example, in Fig. 1 tangent bifurcations occur at the right
edges of the plateaux for r= 3

2 , 7
5 , and 11

8 ; all other right-edge
bifurcations we investigated in this parameter range are dis-
continuous. Moreover, it can be shown that the bifurcations
at the right edges are all discontinuous for I0 below some
threshold, if the oscillatory drive I1 is small relative to Ith.

The dynamical transitions discussed above are analogous
to equilibrium phase transitions in statistical physics. For ex-
ample, the scaling laws at tangent bifurcations are equivalent
to the laws for continuous phase transitions with classical
exponents �= 1

2 , �= 1
2 , and =0, where singular �and univer-

sal� behavior results from a diverging coherence scale. The
behavior at discontinuous bifurcations is unusual, mixing
properties of both continuous and first order transitions:
while the disorder parameter Tav−rTdr vanishes continuously
at the bifurcation, the coherence time remains finite. The
singularity underlying universality is the discontinuity in the
map, leading to a logarithmic scaling law for Tav−rTdr that
vanishes more slowly than any power law.

Now we demonstrate how the preceding analysis can ap-
ply to multidimensional nonlinear gating variable neuron
models. Consider the canonical Hodgkin-Huxley equations
with stimulus current I�t�= I0+ I1 cos�2�t /Tdr� and an addi-
tional Connor-Stevens A-current term �13�

C
dv
dt

= − gNam
3h�v − ENa� − gKn4�v − EK� − gL�v − EL�

− gAa3b�v − EA� + I0 + I1 cos�2�t/Tdr� . �9�

The ODEs describing the gating variables n�t�, m�t�, h�t�,

a�t�, and b�t� and the values of the constants C, gNa, gK, gA,
gL, ENa, EK, EA, and EL are taken from Ref. �14�. In the
unperturbed case �I1=0� the A-current term causes arbitrarily
long ISIs for I0 above a stimulus threshold Ith, as in the IF
model �here we define the spikes as v�t� increasing through
zero�. The HH-CS model exhibits an entrainment pattern
strikingly similar to the IF model, as shown in the inset of
Fig. 1 where we plot the average ISI vs I0 in units of Ith for
this model. We again use Tdr=35 ms but now take a slightly
larger I1=0.14Ith. For larger I0 one can see square root scal-
ing near the plateau edges, and for smaller I0 the plateaux
become more stairlike, reminiscent of the discontinuous bi-
furcations discussed above.

At first glance, our 1D map analysis should not apply
since the voltage and five gating variables evolve in a 7D
state space �including time�. But if we plot consecutive spike
times �tn , tn+1� for a large number of different initial condi-
tions we do essentially recover a one-dimensional map as
shown in Fig. 2�c�. This can be explained as follows. It is
known that the unperturbed system �I1=0� has an attracting
limit cycle for I0� Ith, which becomes an attracting cylinder
in the 7D state space that includes time. This attracting in-
variant surface persists, at least for small I1�0. Spikes occur
when trajectories cross the 1D curve v=0 on this surface, so
the map is just the Poincaré return map for this section.

For I1=0 the return map is F�t�= t+T0, where T0 is the
period of the system’s limit cycle. As we increase I1 above
zero, the shape of F changes continuously but quite rapidly
as illustrated in Fig. 2�c�. For example, even for relatively
modest I1, the maximum slope of F can be large ��105 for
I1=0.14Ith and I0 in the r=2 plateau�. When this happens, the
resulting Tav curve resembles the discontinuous case studied
in the IF model. Thus, even though F may still technically be
continuous, our analysis of the phase transitions at discon-
tinuous bifurcations is relevant and moreover helps explain
the dominance of the plateaux in the blue curve in the inset
in Fig. 1.

In conclusion, periodically driven 1D threshold neurons
lose p-q entrainment through two markedly different routes,
corresponding to tangent and discontinuous bifurcations.
Each has its own characteristic universal scaling laws which
measure the rate of convergence to entrainment within the
p-q plateau as well as the deviation from p-q entrainment
just outside the plateau. Remarkably, this 1D map analysis
also applies to higher-dimensional gating variable models.
From a neurophysiological perspective, our results suggest
that when a neuron firing at some rate receives an additional
rhythmic perturbation, spike timing adjusts according to a
return map. Whole-cell slice recording is an ideal setting in
which to explore in vitro the pattern formation discussed in
this paper.
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